A new approach for mechanisms of ferroelectric crystalline phase formation in PVDF nanocomposites.
نویسندگان
چکیده
This paper proposes a new mechanism for ferroelectric polymorph formation of poly(vinylidene fluoride) (PVDF) nanocomposites. Utilizing time-resolved Fourier transform infrared spectroscopy (FTIR), the real-time investigation of the conformational changes of the PVDF chain segment during crystallization of neat PVDF and the corresponding nanocomposite was performed. Whilst PVDF-clay nanocomposites exhibited mainly the β crystal phase coexisting with the γ phase at low Tc (Tc < 155 °C), the coexistence of γ and β crystalline phases was found at a high Tc temperature range (Tc > 155 °C). Experimental results were compared with predictions of the Lauritzen and Hoffman (LH) model and discrepancies were observed between model predictions and experiments. We then recalled the Brochard-de Gennes (BD) model and proposed that different crystalline polymorph formation should be inferred as a transition in the reeling-in rate dependence of the friction coefficient on nanocomposites rather than as a change in the relative rates of secondary nucleation and substrate completion. Combining LH and BD models we proposed a new mechanism to answer the contradictory questions associated with nanocomposite polymorphism. The coexistence of different polymorphs in nanocomposites was proposed to be associated with the coexistence of fast and slow moving chains, which were recognized as the free and adsorbed chains by nanofillers.
منابع مشابه
Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors.
The fabrication of nanoporous poly(vinylidene fluoride) (PVDF) and PVDF/nickel nanocomposites from semicrystalline block copolymer precursors is reported. Polystyrene-block-poly(vinylidene fluoride)-block-polystyrene (PS-b-PVDF-b-PS) is prepared through functional benzoyl peroxide initiated polymerization of VDF, followed by atom transfer radical polymerization (ATRP) of styrene. The crystalliz...
متن کاملDielectric properties of polymer composites with the addition of ferrite nanoparticles
The aim of the work was examination of the dielectric properties of a new type of polymer nanocomposites based on PVDF (polyvinylidene fluoride), or a copolymer P(VDF-HFP) with addition of ferrite nanoparticles. The addition of nanofillers leads not only to the formation of polar -phase of PVDF, which shows unique piro-, piezoand ferroelectric properties used in many applications, but also aff...
متن کاملFerroelectric Properties and Polarization Switching Kinetic of Poly (vinylidene fluoride-trifluoroethylene) Copolymer
The discovery of the piezoelectric properties of poly(vinylidene fluoride) (PVDF) by Kawai [Kawai, 1969], and the study of its pyroelectric and nonlinear optical properties [Bergman et al., 1971; Glass, 1971] led to the discovery of its ferroelectric properties in the early 1970s. Since that time, considerable development and progress have been made on both materials and devices based on PVDF. ...
متن کاملInfluence of Miscibility Phenomenon on Crystalline Polymorph Transition in Poly(Vinylidene Fluoride)/Acrylic Rubber/Clay Nanocomposite Hybrid
In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found ...
متن کاملCharacterization of poled and non-poled -PVDF films using thermal analysis techniques
-poly(vinylidene fluoride)— -PVDF—exhibits ferroelectric properties due to the special arrangement of the chain units in the crystalline phase. The ferroelectric phase can be optimised by poling the original stretched film, that tends to align the randomly organised crystallites against the applied field. In this work, polarised and non-polarised -PVDF from the same batch are characterised by m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 22 شماره
صفحات -
تاریخ انتشار 2014